283 research outputs found

    Bacterial membrane activity of α-peptide/β-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates.</p> <p>Results</p> <p>All six AMP analogues inhibited growth of twelve food-borne and clinical bacterial strains including Extended Spectrum Beta-Lactamase-producing <it>Escherichia coli</it>. In general, the Minimum Inhibitory Concentrations (MIC) against Gram-positive and -negative bacteria were similar, ranging from 1 to 5 μM. The type of cationic amino acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against <it>Serratia marcescens </it>(MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from <it>Staphylococcus aureus </it>and <it>S. marcescens </it>with similar time of onset and reduction in the number of viable cells. EDTA pre-treatment of <it>S. marcescens </it>and <it>E. coli </it>followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length did not influence the degree of ATP leakage, but the amount of intracellular ATP remaining in the cell after treatment was influenced by chimera length with the longest analogue causing complete depletion of intracellular ATP. Hence some chimeras caused a complete disruption of the membrane, and this was parallel by the largest reduction in number of viable bacteria.</p> <p>Conclusion</p> <p>We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization of the bacterial cell envelope, and the outer membrane may act as a barrier in Gram-negative bacteria. The tolerance of <it>S. marcescens </it>to chimeras may be due to differences in the composition of the lipopolysaccharide layer also responsible for its resistance to polymyxin B.</p

    Simultaneous quantification of multiple RNA cargos co-loaded into nanoparticle-based delivery systems

    Full text link
    Robust, sensitive, and versatile analytical methods are essential for quantification of RNA drug cargos loaded into nanoparticle-based delivery systems. However, simultaneous quantification of multiple RNA cargos co-loaded into nanoparticles remains a challenge. Here, we developed and validated the use of ion-pair reversed-phase high-performance liquid chromatography combined with UV detection (IP-RP-HPLC-UV) for simultaneous quantification of single- and double-stranded RNA cargos. Complete extraction of RNA cargo from the nanoparticle carrier was achieved using a phenol:chloroform:isoamyl alcohol mixture. Separations were performed using either a C18 or a PLRP-S column, eluted with 0.1 M triethylammonium acetate (TEAA) solution as ion-pairing reagent (eluent A), and 0.1 M TEAA containing 25 % (v/v) CH3CN as eluent B. These methods were applied to quantify mRNA and polyinosinic:polycytidylic acid co-loaded into lipid-polymer hybrid nanoparticles, and single-stranded oligodeoxynucleotide donors and Alt-R CRISPR single guide RNAs co-loaded into lipid nanoparticles. The developed methods were sensitive (limit of RNA quantification 0.997), and accurate (≈ 100 % recovery of RNA spiked in nanoparticles). Hence, the present study may facilitate convenient quantification of multiple RNA cargos co-loaded into nanoparticle-based delivery systems
    corecore